Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 5-25
Voir la notice de l'article provenant de la source Math-Net.Ru
The results of I. M. Vinogradov and van der Corput regarding the number of integral points under a curve are generalized to the case when on the integral points $(a_1,a_2)$ one imposes the additional condition $a_1a_2\equiv l(\operatorname{mod}q)$. A corollary is an asymptotic formula for
$$
\sum^p_{z=1}\tau(z^2+D)
$$
with the remainder $O(P^{5/6+\varepsilon})$ instead of Hooley's estimate $O(P^{8/9+\varepsilon})$. It is shown how with the aid of the spectral theory of automorphic functions one can bring the estimate to $O(P^{2/3+\varepsilon})$.
@article{ZNSL_1981_112_a0,
author = {V. A. Bykovskii},
title = {Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--25},
publisher = {mathdoc},
volume = {112},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a0/}
}
TY - JOUR AU - V. A. Bykovskii TI - Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1981 SP - 5 EP - 25 VL - 112 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a0/ LA - ru ID - ZNSL_1981_112_a0 ER -
V. A. Bykovskii. Asymptotic properties of integral points $(a_1,a_2)$, satisfying the congruence $a_1a_2\equiv l(q)$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 4, Tome 112 (1981), pp. 5-25. http://geodesic.mathdoc.fr/item/ZNSL_1981_112_a0/