$(A,\vec 0)$-parabolic equations with a weak degeneracy
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 52-62
Voir la notice de l'article provenant de la source Math-Net.Ru
For quasilinear parabolic equations, admitting a weak fixed parabolicity degeneracy, one establishes theorems for the existence and the uniqueness of generalized solutions of the general (in particular, the first, second, and third) boundaryvalue problem. One considers in special the case of linear parabolic equations with a nonnegative characteristic form.
@article{ZNSL_1981_111_a2,
author = {A. V. Ivanov},
title = {$(A,\vec 0)$-parabolic equations with a weak degeneracy},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--62},
publisher = {mathdoc},
volume = {111},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a2/}
}
A. V. Ivanov. $(A,\vec 0)$-parabolic equations with a weak degeneracy. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 52-62. http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a2/