$(A,\vec 0)$-parabolic equations with a weak degeneracy
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 52-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For quasilinear parabolic equations, admitting a weak fixed parabolicity degeneracy, one establishes theorems for the existence and the uniqueness of generalized solutions of the general (in particular, the first, second, and third) boundaryvalue problem. One considers in special the case of linear parabolic equations with a nonnegative characteristic form.
@article{ZNSL_1981_111_a2,
     author = {A. V. Ivanov},
     title = {$(A,\vec 0)$-parabolic equations with a weak degeneracy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--62},
     year = {1981},
     volume = {111},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - $(A,\vec 0)$-parabolic equations with a weak degeneracy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 52
EP  - 62
VL  - 111
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a2/
LA  - ru
ID  - ZNSL_1981_111_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T $(A,\vec 0)$-parabolic equations with a weak degeneracy
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 52-62
%V 111
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a2/
%G ru
%F ZNSL_1981_111_a2
A. V. Ivanov. $(A,\vec 0)$-parabolic equations with a weak degeneracy. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 52-62. http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a2/