Updating an optimal structured scheme
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 151-161

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal structured schedule at time $t$ is considered for a set of jobs $Z$ with given start and due date $[\alpha_i,D_i]$ volumes $V_i$ (volume is defined as the number of homogeneous independent elementary operations of unit length that comprise the job), and penalty functions. The penalty for selecting an element of job $i\in Z$ at time $t$ is $\varphi_i(t)$. The schedule penalty is the total penalty of all the elements of all the jobs. An optimal schedule is a minimum-penalty schedule. We investigate the impact of changing the volume of a job from the set $Z$ on the structure of the optimal schedule. Algorithms are proposed for handling the modified job set with both reduced and enlarged job volumes. These algorithms require $k$ computer operations, where $k$ is the number of jobs in the original set, $l$ is the change in job volume (expressed by the number of units), and $c$ is a constant.
@article{ZNSL_1981_111_a11,
     author = {T. E. Safonova},
     title = {Updating an optimal structured scheme},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--161},
     publisher = {mathdoc},
     volume = {111},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a11/}
}
TY  - JOUR
AU  - T. E. Safonova
TI  - Updating an optimal structured scheme
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 151
EP  - 161
VL  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a11/
LA  - ru
ID  - ZNSL_1981_111_a11
ER  - 
%0 Journal Article
%A T. E. Safonova
%T Updating an optimal structured scheme
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 151-161
%V 111
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a11/
%G ru
%F ZNSL_1981_111_a11
T. E. Safonova. Updating an optimal structured scheme. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 151-161. http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a11/