Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 145-150
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the determination of the minimal eigenvalue of a symmetric positive-definite matrix one obtains an estimate of the asymptotic rate of convergence of a generalized method of conjugate gradients, based on the method of the symmetric upper relaxation. One establishes the asymptotic value of the relaxation parameter.
			
            
            
            
          
        
      @article{ZNSL_1981_111_a10,
     author = {G. V. Savinov},
     title = {Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--150},
     publisher = {mathdoc},
     volume = {111},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/}
}
                      
                      
                    TY - JOUR AU - G. V. Savinov TI - Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix JO - Zapiski Nauchnykh Seminarov POMI PY - 1981 SP - 145 EP - 150 VL - 111 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/ LA - ru ID - ZNSL_1981_111_a10 ER -
%0 Journal Article %A G. V. Savinov %T Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix %J Zapiski Nauchnykh Seminarov POMI %D 1981 %P 145-150 %V 111 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/ %G ru %F ZNSL_1981_111_a10
G. V. Savinov. Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 145-150. http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/