Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 145-150

Voir la notice de l'article provenant de la source Math-Net.Ru

For the determination of the minimal eigenvalue of a symmetric positive-definite matrix one obtains an estimate of the asymptotic rate of convergence of a generalized method of conjugate gradients, based on the method of the symmetric upper relaxation. One establishes the asymptotic value of the relaxation parameter.
@article{ZNSL_1981_111_a10,
     author = {G. V. Savinov},
     title = {Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--150},
     publisher = {mathdoc},
     volume = {111},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/}
}
TY  - JOUR
AU  - G. V. Savinov
TI  - Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 145
EP  - 150
VL  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/
LA  - ru
ID  - ZNSL_1981_111_a10
ER  - 
%0 Journal Article
%A G. V. Savinov
%T Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 145-150
%V 111
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/
%G ru
%F ZNSL_1981_111_a10
G. V. Savinov. Convergence of a generalized method of conjugate gradients for the determination of the extremal eigenvalues of a matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 145-150. http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a10/