Successive approximation by spaces of local functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 31-51

Voir la notice de l'article provenant de la source Math-Net.Ru

One considers interpolation and approximation by local functions on a nonuniform net and stable algorithms for their successive construction. One introduces the concept of $H$-stability of a family of interpolations and one determines sufficient conditions for $H$-stability. One constructs nonhomogeneous spaces of local functions which realize an a priori approximation of a given order; the basis functions of these spaces have in a certain sense a minimal support and possess interpolation properties.
@article{ZNSL_1981_111_a1,
     author = {Yu. K. Dem'yanovich},
     title = {Successive approximation by spaces of local functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--51},
     publisher = {mathdoc},
     volume = {111},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a1/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
TI  - Successive approximation by spaces of local functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 31
EP  - 51
VL  - 111
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a1/
LA  - ru
ID  - ZNSL_1981_111_a1
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%T Successive approximation by spaces of local functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 31-51
%V 111
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a1/
%G ru
%F ZNSL_1981_111_a1
Yu. K. Dem'yanovich. Successive approximation by spaces of local functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part V, Tome 111 (1981), pp. 31-51. http://geodesic.mathdoc.fr/item/ZNSL_1981_111_a1/