Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 134-178

Voir la notice de l'article provenant de la source Math-Net.Ru

The work gives a consistent and uniform exposition of all known results related to Heisenberg model. The classification of excitations is presented and their scattering is described both in ferromagnetic and the antiferromagnetic cases. It is shown that in the antiferromagnetic case there exists only one excitation with spin 1/2 which is a kink in the following sense: in physical states there is only an even number of kinks-spin waves, therefore they always have an integer spin. Thus, it is shown that the conventional picture of excitations is wrong in the antiferromagnetic case and the spin wave has spin 1/2, matrix is calculated.
@article{ZNSL_1981_109_a6,
     author = {L. A. Takhtadzhyan and L. D. Faddeev},
     title = {Spectrum and scattering of excitations in the one-dimensional isotropic {Heisenberg} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--178},
     publisher = {mathdoc},
     volume = {109},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a6/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
AU  - L. D. Faddeev
TI  - Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 134
EP  - 178
VL  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a6/
LA  - ru
ID  - ZNSL_1981_109_a6
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%A L. D. Faddeev
%T Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 134-178
%V 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a6/
%G ru
%F ZNSL_1981_109_a6
L. A. Takhtadzhyan; L. D. Faddeev. Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 134-178. http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a6/