Representation of the Zamolodchikov–Faddeev algebra
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 83-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For quantum completely integrable models with an infinite number of degrees of freedom, such as vector nonlinear Schrödinger equations on the line, isotropic and anisotropic generalized Heisenberg ferromagnets, operators are constructed which satisfy the permutation relations of Zamolodchikov's algebra.
@article{ZNSL_1981_109_a3,
     author = {P. P. Kulish},
     title = {Representation of the {Zamolodchikov{\textendash}Faddeev} algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--92},
     year = {1981},
     volume = {109},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a3/}
}
TY  - JOUR
AU  - P. P. Kulish
TI  - Representation of the Zamolodchikov–Faddeev algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 83
EP  - 92
VL  - 109
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a3/
LA  - ru
ID  - ZNSL_1981_109_a3
ER  - 
%0 Journal Article
%A P. P. Kulish
%T Representation of the Zamolodchikov–Faddeev algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 83-92
%V 109
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a3/
%G ru
%F ZNSL_1981_109_a3
P. P. Kulish. Representation of the Zamolodchikov–Faddeev algebra. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 83-92. http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a3/