Representation of the Zamolodchikov–Faddeev algebra
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 83-92
Voir la notice du chapitre de livre
For quantum completely integrable models with an infinite number of degrees of freedom, such as vector nonlinear Schrödinger equations on the line, isotropic and anisotropic generalized Heisenberg ferromagnets, operators are constructed which satisfy the permutation relations of Zamolodchikov's algebra.
@article{ZNSL_1981_109_a3,
author = {P. P. Kulish},
title = {Representation of the {Zamolodchikov{\textendash}Faddeev} algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--92},
year = {1981},
volume = {109},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a3/}
}
P. P. Kulish. Representation of the Zamolodchikov–Faddeev algebra. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 83-92. http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a3/