Analogues of the Gauss–Vinogradov formula on the critical line
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 41-82
Cet article a éte moissonné depuis la source Math-Net.Ru
An asymptotic behavior of the sum $\sum_{p\equiv v(\operatorname{mod}4),\ p\le X}L(s,\chi_p)$ for $X\to\infty$ is studied in the critical strip, where $L(s,\chi_p)$ is the Dirichlet series with the quadratic character $\chi_p$ modulo $p$, where $p$ is a prime number; $v=1$ or $3$. With the help of large seive estimates a formula for this sum is obtained with two asymptotic terms on the critical line of the variable $s$. As a corollary the asymptotic expansion of this sum at the point $s=1/2$ is presented. The asymptotic formula for the sum $\sum_{|d|\le X}L(s,\chi_d)$, where $d$ runs over discriminants of quadratic fields, is also obtained.
@article{ZNSL_1981_109_a2,
author = {A. I. Vinogradov and L. A. Takhtadzhyan},
title = {Analogues of the {Gauss{\textendash}Vinogradov} formula on the critical line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {41--82},
year = {1981},
volume = {109},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a2/}
}
A. I. Vinogradov; L. A. Takhtadzhyan. Analogues of the Gauss–Vinogradov formula on the critical line. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 41-82. http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a2/