Analogues of the Gauss--Vinogradov formula on the critical line
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 41-82

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic behavior of the sum $\sum_{p\equiv v(\operatorname{mod}4),\ p\le X}L(s,\chi_p)$ for $X\to\infty$ is studied in the critical strip, where $L(s,\chi_p)$ is the Dirichlet series with the quadratic character $\chi_p$ modulo $p$, where $p$ is a prime number; $v=1$ or $3$. With the help of large seive estimates a formula for this sum is obtained with two asymptotic terms on the critical line of the variable $s$. As a corollary the asymptotic expansion of this sum at the point $s=1/2$ is presented. The asymptotic formula for the sum $\sum_{|d|\le X}L(s,\chi_d)$, where $d$ runs over discriminants of quadratic fields, is also obtained.
@article{ZNSL_1981_109_a2,
     author = {A. I. Vinogradov and L. A. Takhtadzhyan},
     title = {Analogues of the {Gauss--Vinogradov} formula on the critical line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--82},
     publisher = {mathdoc},
     volume = {109},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a2/}
}
TY  - JOUR
AU  - A. I. Vinogradov
AU  - L. A. Takhtadzhyan
TI  - Analogues of the Gauss--Vinogradov formula on the critical line
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 41
EP  - 82
VL  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a2/
LA  - ru
ID  - ZNSL_1981_109_a2
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%A L. A. Takhtadzhyan
%T Analogues of the Gauss--Vinogradov formula on the critical line
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 41-82
%V 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a2/
%G ru
%F ZNSL_1981_109_a2
A. I. Vinogradov; L. A. Takhtadzhyan. Analogues of the Gauss--Vinogradov formula on the critical line. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part IV, Tome 109 (1981), pp. 41-82. http://geodesic.mathdoc.fr/item/ZNSL_1981_109_a2/