Characterization of distributions by the property of local asymptotic optimality of test statistics
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 119-133
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,X_2,\dots$ be i.i.d. random variables with common density $f(x-\Theta)$ depending on a location parameter $\Theta\in R^1$. Consider testing the null hypothesis $H_0:\Theta=0$ against $H_1:\Theta\ne0$ and let $\{T_n(X_1,X_2,\dots,X_n)\}$ be a sequence of test statistics. The property of local asymptotic optimality of $\{T_n\}$ in the Bahadur sense means that the exact slope $C_T(\Theta)$ of $\{T_n\}$ is equivalent to
$$
2K(\Theta)=2\int_{-\infty}^\infty\ln\frac{f(x-\Theta)}{f(x)}f(x-\Theta)\,dx
$$
when $\Theta\to0$.
The aim of the paper is to obtain characterizations of densities $f$ for which test statistics such as the sample mean Kolmogorov–Smirnov and $\omega^2$ are locally asymptotically optimal. The typical result is as follows: under some conditions $\omega^2$-criterion is locally asymptotically optimal iff $f(x)=(\pi\ch x)^{-1}$, possibly with other location and scale. Similar results are obtained in the two-sample case.
@article{ZNSL_1981_108_a8,
author = {Ya. Yu. Nikitin},
title = {Characterization of distributions by the property of local asymptotic optimality of test statistics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {119--133},
publisher = {mathdoc},
volume = {108},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a8/}
}
TY - JOUR AU - Ya. Yu. Nikitin TI - Characterization of distributions by the property of local asymptotic optimality of test statistics JO - Zapiski Nauchnykh Seminarov POMI PY - 1981 SP - 119 EP - 133 VL - 108 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a8/ LA - ru ID - ZNSL_1981_108_a8 ER -
Ya. Yu. Nikitin. Characterization of distributions by the property of local asymptotic optimality of test statistics. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 119-133. http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a8/