On the rank of necessary and sufficient statistics for a sample of multivariate distributions
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 57-71
Cet article a éte moissonné depuis la source Math-Net.Ru
The rank of necessary and sufficient statistics is described in terms of functional independency of linear combinations of ratio densities logarithms.
@article{ZNSL_1981_108_a4,
author = {M. S. Ermakov},
title = {On the rank of necessary and sufficient statistics for a~sample of multivariate distributions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--71},
year = {1981},
volume = {108},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a4/}
}
M. S. Ermakov. On the rank of necessary and sufficient statistics for a sample of multivariate distributions. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 57-71. http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a4/