Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 5-21
Cet article a éte moissonné depuis la source Math-Net.Ru
The Gaussian stationary process $x_t$, $t=0,\pm1,\dots$ with zero mean spectral dencity $f$: $$ f(\lambda)=|Q_m(e^{i\lambda})|^2h(\lambda), $$ where $Q_m(z)$ is polynomial of degree $m$ with roots on the unit circle is, considered. The purpose of this paper is to investigate the asymptotic behavior of the logarithm of likelihood function $\mathscr L_n$. We show, that under the suitable condition on the spectral density $f$ the simple approximation $\widetilde{\mathscr L}_n$ of the function $\mathscr L_n$ satisfying the condition $$ \frac1{\sqrt n}(\mathscr L_n-\widetilde{\mathscr L}_n)\to0\text{ when }n\to\infty $$ by probability exist.
@article{ZNSL_1981_108_a1,
author = {M. S. Ginovyan},
title = {Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--21},
year = {1981},
volume = {108},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/}
}
M. S. Ginovyan. Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/