Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 5-21
Voir la notice de l'article provenant de la source Math-Net.Ru
The Gaussian stationary process $x_t$, $t=0,\pm1,\dots$ with zero mean spectral dencity $f$:
$$
f(\lambda)=|Q_m(e^{i\lambda})|^2h(\lambda),
$$
where $Q_m(z)$ is polynomial of degree $m$ with roots on the unit circle is, considered. The purpose of this paper is to investigate the asymptotic behavior of the logarithm of likelihood function $\mathscr L_n$. We show, that under the suitable condition on the spectral density $f$ the simple approximation $\widetilde{\mathscr L}_n$ of the function $\mathscr L_n$ satisfying the condition
$$
\frac1{\sqrt n}(\mathscr L_n-\widetilde{\mathscr L}_n)\to0\text{ when }n\to\infty
$$
by probability exist.
@article{ZNSL_1981_108_a1,
author = {M. S. Ginovyan},
title = {Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--21},
publisher = {mathdoc},
volume = {108},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/}
}
TY - JOUR AU - M. S. Ginovyan TI - Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros JO - Zapiski Nauchnykh Seminarov POMI PY - 1981 SP - 5 EP - 21 VL - 108 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/ LA - ru ID - ZNSL_1981_108_a1 ER -
M. S. Ginovyan. Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/