Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 5-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gaussian stationary process $x_t$, $t=0,\pm1,\dots$ with zero mean spectral dencity $f$: $$ f(\lambda)=|Q_m(e^{i\lambda})|^2h(\lambda), $$ where $Q_m(z)$ is polynomial of degree $m$ with roots on the unit circle is, considered. The purpose of this paper is to investigate the asymptotic behavior of the logarithm of likelihood function $\mathscr L_n$. We show, that under the suitable condition on the spectral density $f$ the simple approximation $\widetilde{\mathscr L}_n$ of the function $\mathscr L_n$ satisfying the condition $$ \frac1{\sqrt n}(\mathscr L_n-\widetilde{\mathscr L}_n)\to0\text{ when }n\to\infty $$ by probability exist.
@article{ZNSL_1981_108_a1,
     author = {M. S. Ginovyan},
     title = {Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {108},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/}
}
TY  - JOUR
AU  - M. S. Ginovyan
TI  - Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 5
EP  - 21
VL  - 108
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/
LA  - ru
ID  - ZNSL_1981_108_a1
ER  - 
%0 Journal Article
%A M. S. Ginovyan
%T Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 5-21
%V 108
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/
%G ru
%F ZNSL_1981_108_a1
M. S. Ginovyan. Asymptotic behavior of the log-likelihood function when the spectral function has polynomial zeros. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part V, Tome 108 (1981), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_1981_108_a1/