There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 7, Tome 106 (1981), pp. 134-136
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZNSL_1981_106_a7,
author = {B. F. Skubenko},
title = {There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--136},
year = {1981},
volume = {106},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/}
}
B. F. Skubenko. There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 7, Tome 106 (1981), pp. 134-136. http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/