There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 7, Tome 106 (1981), pp. 134-136
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ZNSL_1981_106_a7,
author = {B. F. Skubenko},
title = {There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--136},
publisher = {mathdoc},
volume = {106},
year = {1981},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/}
}
TY - JOUR AU - B. F. Skubenko TI - There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 1981 SP - 134 EP - 136 VL - 106 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/ LA - ru ID - ZNSL_1981_106_a7 ER -
B. F. Skubenko. There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 7, Tome 106 (1981), pp. 134-136. http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/