There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 7, Tome 106 (1981), pp. 134-136

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZNSL_1981_106_a7,
     author = {B. F. Skubenko},
     title = {There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--136},
     publisher = {mathdoc},
     volume = {106},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/}
}
TY  - JOUR
AU  - B. F. Skubenko
TI  - There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 134
EP  - 136
VL  - 106
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/
LA  - ru
ID  - ZNSL_1981_106_a7
ER  - 
%0 Journal Article
%A B. F. Skubenko
%T There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 134-136
%V 106
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/
%G ru
%F ZNSL_1981_106_a7
B. F. Skubenko. There exist square real matrices in each dimension $n\ge2880$ which are not $DOTU$ matrices. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 7, Tome 106 (1981), pp. 134-136. http://geodesic.mathdoc.fr/item/ZNSL_1981_106_a7/