Justification of asymptotic formula for the solutions of perturbed Fock–Klein–Gordon equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 11, Tome 104 (1981), pp. 84-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Fock–Klein–Gordon equation, perturbed by the small non-linear operator $\varepsilon R[\varepsilon t,u,u_x,u_{xx}]$ is considered: $$ u_{tt}-c^2u_{xx}+m^2u=\varepsilon R[\varepsilon t,u,u_x,u_{xx}],\quad0<\varepsilon\ll1. $$ The boundary condition and the initial data are periodical $$ u(x+2\pi)=u(x),\quad u\mid_{t=0}a\cos x,\quad u_t\mid_{t=0}=a\omega\sin x,\quad\omega^2=c^2+m^2. $$ It is proved (if some additional conditions are realised) that 1) the solution of the problem exists on an interval $0\le t\le\ell/\varepsilon$, $\ell=\operatorname{const}>0$ and that 2) the difftrence between $u$ and the known asymptotic solution of the problem is small.
@article{ZNSL_1981_104_a7,
     author = {S. A. Vakulenko},
     title = {Justification of asymptotic formula for the solutions of perturbed {Fock{\textendash}Klein{\textendash}Gordon} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {84--92},
     year = {1981},
     volume = {104},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a7/}
}
TY  - JOUR
AU  - S. A. Vakulenko
TI  - Justification of asymptotic formula for the solutions of perturbed Fock–Klein–Gordon equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 84
EP  - 92
VL  - 104
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a7/
LA  - ru
ID  - ZNSL_1981_104_a7
ER  - 
%0 Journal Article
%A S. A. Vakulenko
%T Justification of asymptotic formula for the solutions of perturbed Fock–Klein–Gordon equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 84-92
%V 104
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a7/
%G ru
%F ZNSL_1981_104_a7
S. A. Vakulenko. Justification of asymptotic formula for the solutions of perturbed Fock–Klein–Gordon equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 11, Tome 104 (1981), pp. 84-92. http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a7/