Justification of asymptotic formula for the solutions of perturbed Fock–Klein–Gordon equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 11, Tome 104 (1981), pp. 84-92
Cet article a éte moissonné depuis la source Math-Net.Ru
The Fock–Klein–Gordon equation, perturbed by the small non-linear operator $\varepsilon R[\varepsilon t,u,u_x,u_{xx}]$ is considered: $$ u_{tt}-c^2u_{xx}+m^2u=\varepsilon R[\varepsilon t,u,u_x,u_{xx}],\quad0<\varepsilon\ll1. $$ The boundary condition and the initial data are periodical $$ u(x+2\pi)=u(x),\quad u\mid_{t=0}a\cos x,\quad u_t\mid_{t=0}=a\omega\sin x,\quad\omega^2=c^2+m^2. $$ It is proved (if some additional conditions are realised) that 1) the solution of the problem exists on an interval $0\le t\le\ell/\varepsilon$, $\ell=\operatorname{const}>0$ and that 2) the difftrence between $u$ and the known asymptotic solution of the problem is small.
@article{ZNSL_1981_104_a7,
author = {S. A. Vakulenko},
title = {Justification of asymptotic formula for the solutions of perturbed {Fock{\textendash}Klein{\textendash}Gordon} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--92},
year = {1981},
volume = {104},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a7/}
}
S. A. Vakulenko. Justification of asymptotic formula for the solutions of perturbed Fock–Klein–Gordon equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 11, Tome 104 (1981), pp. 84-92. http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a7/