Comparison Kirchhoff's method and the method of parabolic equation in the whispering gallery waves problem in a~vicinity of flex point: of the boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 11, Tome 104 (1981), pp. 139-145

Voir la notice de l'article provenant de la source Math-Net.Ru

The whispering gallery waves problem in a neighbourhood of a boundary flex point is considered. The author uses Kirchhoff's method and compares the results with the ones obtained by the method of parabolic equation [1]. The results of the comparison are discussed and diagramms are presented.
@article{ZNSL_1981_104_a13,
     author = {A. I. Lanin},
     title = {Comparison {Kirchhoff's} method and the method of parabolic equation in the whispering gallery waves problem in a~vicinity of flex point: of the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--145},
     publisher = {mathdoc},
     volume = {104},
     year = {1981},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a13/}
}
TY  - JOUR
AU  - A. I. Lanin
TI  - Comparison Kirchhoff's method and the method of parabolic equation in the whispering gallery waves problem in a~vicinity of flex point: of the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1981
SP  - 139
EP  - 145
VL  - 104
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a13/
LA  - ru
ID  - ZNSL_1981_104_a13
ER  - 
%0 Journal Article
%A A. I. Lanin
%T Comparison Kirchhoff's method and the method of parabolic equation in the whispering gallery waves problem in a~vicinity of flex point: of the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1981
%P 139-145
%V 104
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a13/
%G ru
%F ZNSL_1981_104_a13
A. I. Lanin. Comparison Kirchhoff's method and the method of parabolic equation in the whispering gallery waves problem in a~vicinity of flex point: of the boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 11, Tome 104 (1981), pp. 139-145. http://geodesic.mathdoc.fr/item/ZNSL_1981_104_a13/