Bahadur efficiency of $\omega^2$-type criteria in the several sample case
Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part IV, Tome 98 (1980), pp. 140-148

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of testing of the hypothesie that $r$ independent samples of sizes $n_1,n_2,\dots,n_r$, are drawn from the some population with continuous distribution function $F$. We obtain the local exact slope in the Bahadur sense of the statistic $$ \omega^k_{n_1,n_2,\dots,n_r;q}=\sum_{j=1}^r\rho_j^{k/3} \int_{-\infty}^\infty[F_{n_j}^{(j)}(t)-F(t)]^kq(F(t))\,dF(t), $$ where $F_{n_j}^{(j)}(t)$ are ampirical distribution functions, $q$ is a weight function, $k$ a natural number.
@article{ZNSL_1980_98_a10,
     author = {Ya. Yu. Nikitin},
     title = {Bahadur efficiency of $\omega^2$-type criteria in the several sample case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--148},
     publisher = {mathdoc},
     volume = {98},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_98_a10/}
}
TY  - JOUR
AU  - Ya. Yu. Nikitin
TI  - Bahadur efficiency of $\omega^2$-type criteria in the several sample case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 140
EP  - 148
VL  - 98
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_98_a10/
LA  - ru
ID  - ZNSL_1980_98_a10
ER  - 
%0 Journal Article
%A Ya. Yu. Nikitin
%T Bahadur efficiency of $\omega^2$-type criteria in the several sample case
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 140-148
%V 98
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_98_a10/
%G ru
%F ZNSL_1980_98_a10
Ya. Yu. Nikitin. Bahadur efficiency of $\omega^2$-type criteria in the several sample case. Zapiski Nauchnykh Seminarov POMI, Studies in mathematical statistics. Part IV, Tome 98 (1980), pp. 140-148. http://geodesic.mathdoc.fr/item/ZNSL_1980_98_a10/