Asymptotic bounds on the quality of the nonparametric regression estimation in~$\mathscr L_p$
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 88-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the asymptotic set-up of the following nonparametric problem. Choose the points of measurement $X_1,\dots,X_N$ and estimate the unknown function $f$ on the base of observations $$ Y_i=f(X_i)+G_i(X_i,\omega),\quad i=1,\dots,N, $$ where noise variables $G_1,\dots,G_N$ are independent when $X_1,\dots,X_N$ are fixed. We suppose that the deviation of estimator from regression function $f$ is measured in $\mathscr L_p$ metrix, $1\le p\infty$. The case $p=\infty$ we consider in [1].
@article{ZNSL_1980_97_a9,
     author = {I. A. Ibragimov and R. Z. Khas'minskii},
     title = {Asymptotic bounds on the quality of the nonparametric regression estimation in~$\mathscr L_p$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--101},
     publisher = {mathdoc},
     volume = {97},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a9/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - R. Z. Khas'minskii
TI  - Asymptotic bounds on the quality of the nonparametric regression estimation in~$\mathscr L_p$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 88
EP  - 101
VL  - 97
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a9/
LA  - ru
ID  - ZNSL_1980_97_a9
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A R. Z. Khas'minskii
%T Asymptotic bounds on the quality of the nonparametric regression estimation in~$\mathscr L_p$
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 88-101
%V 97
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a9/
%G ru
%F ZNSL_1980_97_a9
I. A. Ibragimov; R. Z. Khas'minskii. Asymptotic bounds on the quality of the nonparametric regression estimation in~$\mathscr L_p$. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 88-101. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a9/