The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 83-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $F$ be a distribution on $\mathbb R^k$, $F_k^n$ – times convolution of $F$ with itself, $\mathscr L^k=\{B\in\mathbb R^k,B=[a_1,b_1]\times\dots\times[a_k,b_k]\}$. It is proved that $$ \sup_{B\in\mathscr L^k}|F^{n+1}\{B\}-F^n\{B\}|\le\frac{c(F)}{\sqrt n}, $$ where $c(F)$ depends on some characteristics of $F$.
@article{ZNSL_1980_97_a8,
     author = {A. Yu. Zaitsev},
     title = {The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--87},
     year = {1980},
     volume = {97},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a8/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 83
EP  - 87
VL  - 97
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a8/
LA  - ru
ID  - ZNSL_1980_97_a8
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 83-87
%V 97
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a8/
%G ru
%F ZNSL_1980_97_a8
A. Yu. Zaitsev. The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 83-87. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a8/