The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 83-87
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $F$ be a distribution on $\mathbb R^k$, $F_k^n$ – times convolution of $F$ with itself, $\mathscr L^k=\{B\in\mathbb R^k,B=[a_1,b_1]\times\dots\times[a_k,b_k]\}$. It is proved that $$ \sup_{B\in\mathscr L^k}|F^{n+1}\{B\}-F^n\{B\}|\le\frac{c(F)}{\sqrt n}, $$ where $c(F)$ depends on some characteristics of $F$.
@article{ZNSL_1980_97_a8,
author = {A. Yu. Zaitsev},
title = {The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {83--87},
year = {1980},
volume = {97},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a8/}
}
TY - JOUR AU - A. Yu. Zaitsev TI - The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors JO - Zapiski Nauchnykh Seminarov POMI PY - 1980 SP - 83 EP - 87 VL - 97 UR - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a8/ LA - ru ID - ZNSL_1980_97_a8 ER -
A. Yu. Zaitsev. The estimation of proximity of distribution of sequential sums of independent identically distributed random vectors. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 83-87. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a8/