The invariance principle for functions of stationary Gaussian variables
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 32-44
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{Y_j\}$ – the stationary Gaussian sequence.
$$
G(x)\in L^2\biggl(R^1,\frac1{\sqrt{2\pi}}e^{-x^2/2}\,dx\biggl),\quad X_j=G(Y_j).
$$
The invariance principle for $\{X_j\}$ is proved. The representation of limiting process as the stochastic integral is obtained too.
@article{ZNSL_1980_97_a4,
author = {V. V. Gorodestkii},
title = {The invariance principle for functions of stationary {Gaussian} variables},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {32--44},
publisher = {mathdoc},
volume = {97},
year = {1980},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a4/}
}
V. V. Gorodestkii. The invariance principle for functions of stationary Gaussian variables. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 32-44. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a4/