The invariance principle for functions of stationary Gaussian variables
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 32-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\{Y_j\}$ – the stationary Gaussian sequence. $$ G(x)\in L^2\biggl(R^1,\frac1{\sqrt{2\pi}}e^{-x^2/2}\,dx\biggl),\quad X_j=G(Y_j). $$ The invariance principle for $\{X_j\}$ is proved. The representation of limiting process as the stochastic integral is obtained too.
@article{ZNSL_1980_97_a4,
     author = {V. V. Gorodestkii},
     title = {The invariance principle for functions of stationary {Gaussian} variables},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--44},
     year = {1980},
     volume = {97},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a4/}
}
TY  - JOUR
AU  - V. V. Gorodestkii
TI  - The invariance principle for functions of stationary Gaussian variables
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 32
EP  - 44
VL  - 97
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a4/
LA  - ru
ID  - ZNSL_1980_97_a4
ER  - 
%0 Journal Article
%A V. V. Gorodestkii
%T The invariance principle for functions of stationary Gaussian variables
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 32-44
%V 97
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a4/
%G ru
%F ZNSL_1980_97_a4
V. V. Gorodestkii. The invariance principle for functions of stationary Gaussian variables. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 32-44. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a4/