Asymptotic behaviour of the Teoplitz determinant
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 22-31
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with asymptotic behaviour of the Teoplitz determinant $D_n(f)$ for nonnegative functions $f(\lambda)$, $\lambda\in[\pi,\pi]$ Under some conditions on function $f(\lambda)$ the asymptotic representation $$ \ln\frac{D_n(f)}{[G(f)]^{n+1}}=0(n^{-\lambda}),\quad0<\alpha<1, $$ is obtained.
@article{ZNSL_1980_97_a3,
author = {M. S. Ginovyan},
title = {Asymptotic behaviour of the {Teoplitz} determinant},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {22--31},
year = {1980},
volume = {97},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a3/}
}
M. S. Ginovyan. Asymptotic behaviour of the Teoplitz determinant. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 22-31. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a3/