Asymptotic behaviour of the Teoplitz determinant
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 22-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with asymptotic behaviour of the Teoplitz determinant $D_n(f)$ for nonnegative functions $f(\lambda)$, $\lambda\in[\pi,\pi]$ Under some conditions on function $f(\lambda)$ the asymptotic representation $$ \ln\frac{D_n(f)}{[G(f)]^{n+1}}=0(n^{-\lambda}),\quad0<\alpha<1, $$ is obtained.
@article{ZNSL_1980_97_a3,
     author = {M. S. Ginovyan},
     title = {Asymptotic behaviour of the {Teoplitz} determinant},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--31},
     year = {1980},
     volume = {97},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a3/}
}
TY  - JOUR
AU  - M. S. Ginovyan
TI  - Asymptotic behaviour of the Teoplitz determinant
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 22
EP  - 31
VL  - 97
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a3/
LA  - ru
ID  - ZNSL_1980_97_a3
ER  - 
%0 Journal Article
%A M. S. Ginovyan
%T Asymptotic behaviour of the Teoplitz determinant
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 22-31
%V 97
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a3/
%G ru
%F ZNSL_1980_97_a3
M. S. Ginovyan. Asymptotic behaviour of the Teoplitz determinant. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 22-31. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a3/