On existence and uniqueness of solution of Cauchy problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 217-224
Cet article a éte moissonné depuis la source Math-Net.Ru
A discrete model of classical field theory defined by the action $$ S(\varphi)=\frac12\int_{-\infty}^{\infty}dt\sum_{k\in\mathbb Z^d}\biggl(|\dot{\varphi}_k|^2-\sum_{i=1}^d|\varphi_{k+e_i}-\varphi)_k|^2\biggr) $$ and constraints $|\varphi_k|^2=1$ is considered. Here $e_i$ are the basic vectors of $d$-dimensional integer lattice $\mathbb Z^d$, the functions $\varphi_k$ assume their values in $\mathbb R^\nu$. It is proved that the Cauchy problem for the equations of motion of the model with an arbitrary initial data consistent with constraints has at least one $C^\infty$-solution. The unlquness of the solution is established under the condition of uniform boundness of $\dot{\varphi}_k(0)$. In the case $\nu=2,3,4$ the uniqueness theorem is proved without this restriction.
@article{ZNSL_1980_97_a21,
author = {B. I. Shubov},
title = {On existence and uniqueness of solution of {Cauchy} problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {217--224},
year = {1980},
volume = {97},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a21/}
}
TY - JOUR AU - B. I. Shubov TI - On existence and uniqueness of solution of Cauchy problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere JO - Zapiski Nauchnykh Seminarov POMI PY - 1980 SP - 217 EP - 224 VL - 97 UR - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a21/ LA - ru ID - ZNSL_1980_97_a21 ER -
%0 Journal Article %A B. I. Shubov %T On existence and uniqueness of solution of Cauchy problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere %J Zapiski Nauchnykh Seminarov POMI %D 1980 %P 217-224 %V 97 %U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a21/ %G ru %F ZNSL_1980_97_a21
B. I. Shubov. On existence and uniqueness of solution of Cauchy problem for equations of discrete manydimensional chiral fields assuming their values on unit sphere. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 217-224. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a21/