Additive functionals and a~time change which preserves the semi-Markov property of a~process
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 203-216

Voir la notice de l'article provenant de la source Math-Net.Ru

Stochastic processes with paths belonging to $D(\ell_+\to X)$ ($X$ is a metric space) and their time change transformations are considered. It is proved that the necessary and sufficient condition for this transformation to be preserving the semi-Markov property of the processes is the possibility to construct a time change with a family of additive functionals ($a_\tau(\lambda)$, $\lambda\ge0$, $\tau\in\mathscr T$), где $$ \exp(-a_\tau(\lambda))=\int_0^\infty\exp(-\lambda t)F_\tau(dt), $$ $F_\tau$ – being the condition distribution of stopping time $\tau$ of the transformed process and $\mathscr T$ is a family of the first exit times from open sets and their iterations.
@article{ZNSL_1980_97_a20,
     author = {B. P. Harlamov},
     title = {Additive functionals and a~time change which preserves the {semi-Markov} property of a~process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--216},
     publisher = {mathdoc},
     volume = {97},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a20/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - Additive functionals and a~time change which preserves the semi-Markov property of a~process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 203
EP  - 216
VL  - 97
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a20/
LA  - ru
ID  - ZNSL_1980_97_a20
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T Additive functionals and a~time change which preserves the semi-Markov property of a~process
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 203-216
%V 97
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a20/
%G ru
%F ZNSL_1980_97_a20
B. P. Harlamov. Additive functionals and a~time change which preserves the semi-Markov property of a~process. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 203-216. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a20/