Large deviations and asymptotic efficiency of integral type statistics.~II
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 151-175

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains some results on asymptotic behaviour of large deviation probabilities for integral statistics $\int_0^1(F_n(t)-t)^kq(t)\,dt$ and their two-sample analogues. These results permits to calculate local exact Bahadur efficiency of statistics under consideration.
@article{ZNSL_1980_97_a14,
     author = {Ya. Yu. Nikitin},
     title = {Large deviations and asymptotic efficiency of integral type {statistics.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--175},
     publisher = {mathdoc},
     volume = {97},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a14/}
}
TY  - JOUR
AU  - Ya. Yu. Nikitin
TI  - Large deviations and asymptotic efficiency of integral type statistics.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 151
EP  - 175
VL  - 97
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a14/
LA  - ru
ID  - ZNSL_1980_97_a14
ER  - 
%0 Journal Article
%A Ya. Yu. Nikitin
%T Large deviations and asymptotic efficiency of integral type statistics.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 151-175
%V 97
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a14/
%G ru
%F ZNSL_1980_97_a14
Ya. Yu. Nikitin. Large deviations and asymptotic efficiency of integral type statistics.~II. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 151-175. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a14/