On narrow domains of the integral normal convergence
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 6-14

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_{n1},\dots,X_{nk_n}$ be independently distributed random values with distribution functions $F_{n1}(x),\dots,F_{nk_n}(x)$, $n=1,2,\dots$. Let $c>0$ and let $$ \int_{-\infty}^\infty x\,dF_{ni}(x)=0,\quad \int_{-\infty}^\infty x^2\,dF_{ni}(x)=\sigma^2_{ni}\infty. $$ Put $$ B_n^2=\sum_{i=1}^n\sigma_{ni}^2,\quad\Phi(x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^x e^{-t^2/2}\,dt,\quad\log_mz=\underbrace{\log\log\dots\log}_{m\text{ раз}}z,\quad m\ge1. $$ Sufficient conditions are found for the relations to hold \begin{gather} P\biggl(\frac{X_{n1}+\dots+X_{nk_n}}{B_n}\ge x\biggr)=(1-\Phi(x))(1+0(1)), \quad n\to\infty,\notag\\ P\biggl(\frac{X_{n1}+\dots+X_{nk_n}}{B_n}-x\biggr)=\Phi(x)(1+0(1)), \quad n\to\infty, \notag \end{gather} univormly in $x\in[0,c\sqrt{\log_mB_n^2}]$, $m\ge1$.
@article{ZNSL_1980_97_a1,
     author = {N. N. Amosova},
     title = {On narrow domains of the integral normal convergence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {6--14},
     publisher = {mathdoc},
     volume = {97},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a1/}
}
TY  - JOUR
AU  - N. N. Amosova
TI  - On narrow domains of the integral normal convergence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 6
EP  - 14
VL  - 97
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a1/
LA  - ru
ID  - ZNSL_1980_97_a1
ER  - 
%0 Journal Article
%A N. N. Amosova
%T On narrow domains of the integral normal convergence
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 6-14
%V 97
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a1/
%G ru
%F ZNSL_1980_97_a1
N. N. Amosova. On narrow domains of the integral normal convergence. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VI, Tome 97 (1980), pp. 6-14. http://geodesic.mathdoc.fr/item/ZNSL_1980_97_a1/