Integrable Hamiltonian systems connected with graded Lie algebras
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part III, Tome 95 (1980), pp. 3-54

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there is given a geometric scheme for constructing integrable Hamiltonian systems based on Lie groups, generalizing the construction of M. Adler. The operation of this scheme is considered for parabolic decompositions of semisimple Lie groups. Fundamental examples of integrable systems are connected with graded Lie algebras. Among them are the generalized periodic chains of Toda, multidimensional tops, and the motion of a point on various homogeneous spaces in a quadratic potential.
@article{ZNSL_1980_95_a0,
     author = {A. G. Reiman},
     title = {Integrable {Hamiltonian} systems connected with graded {Lie} algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--54},
     publisher = {mathdoc},
     volume = {95},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_95_a0/}
}
TY  - JOUR
AU  - A. G. Reiman
TI  - Integrable Hamiltonian systems connected with graded Lie algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 3
EP  - 54
VL  - 95
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_95_a0/
LA  - ru
ID  - ZNSL_1980_95_a0
ER  - 
%0 Journal Article
%A A. G. Reiman
%T Integrable Hamiltonian systems connected with graded Lie algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 3-54
%V 95
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_95_a0/
%G ru
%F ZNSL_1980_95_a0
A. G. Reiman. Integrable Hamiltonian systems connected with graded Lie algebras. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part III, Tome 95 (1980), pp. 3-54. http://geodesic.mathdoc.fr/item/ZNSL_1980_95_a0/