On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 3, Tome 100 (1980), pp. 5-16
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ZNSL_1980_100_a0,
     author = {E. P. Golubeva},
     title = {On the structure of {Hecke} algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {100},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/}
}
                      
                      
                    TY - JOUR AU - E. P. Golubeva TI - On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup JO - Zapiski Nauchnykh Seminarov POMI PY - 1980 SP - 5 EP - 16 VL - 100 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/ LA - ru ID - ZNSL_1980_100_a0 ER -
%0 Journal Article %A E. P. Golubeva %T On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup %J Zapiski Nauchnykh Seminarov POMI %D 1980 %P 5-16 %V 100 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/ %G ru %F ZNSL_1980_100_a0
E. P. Golubeva. On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 3, Tome 100 (1980), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/