On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a principal congruence subgroup
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 3, Tome 100 (1980), pp. 5-16
Voir la notice du chapitre de livre
@article{ZNSL_1980_100_a0,
author = {E. P. Golubeva},
title = {On the structure of {Hecke} algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--16},
year = {1980},
volume = {100},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/}
}
TY - JOUR AU - E. P. Golubeva TI - On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a principal congruence subgroup JO - Zapiski Nauchnykh Seminarov POMI PY - 1980 SP - 5 EP - 16 VL - 100 UR - http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/ LA - ru ID - ZNSL_1980_100_a0 ER -
E. P. Golubeva. On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a principal congruence subgroup. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 3, Tome 100 (1980), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/