On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 3, Tome 100 (1980), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZNSL_1980_100_a0,
     author = {E. P. Golubeva},
     title = {On the structure of {Hecke} algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {100},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1980
SP  - 5
EP  - 16
VL  - 100
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/
LA  - ru
ID  - ZNSL_1980_100_a0
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup
%J Zapiski Nauchnykh Seminarov POMI
%D 1980
%P 5-16
%V 100
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/
%G ru
%F ZNSL_1980_100_a0
E. P. Golubeva. On the structure of Hecke algebra $L(G,U_0)$, where $G=GL_2(\mathbb Q_p)$ and $U_0$, is a~principal congruence subgroup. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 3, Tome 100 (1980), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_1980_100_a0/