Hilbert symbol in a discrete valuated field
Zapiski Nauchnykh Seminarov POMI, Rings and modules. Part 2, Tome 94 (1979), pp. 50-69

Voir la notice de l'article provenant de la source Math-Net.Ru

In a complete discrete valuated field of characteristic zero with perfect residue field of prime characteristic a pairing with values in the group of primary elements is defined. It is proved that this pairing agrees with the Hilbert norm residue symbol and therefore provides an explicit formula for the latter.
@article{ZNSL_1979_94_a5,
     author = {S. V. Vostokov},
     title = {Hilbert symbol in a discrete valuated field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {50--69},
     publisher = {mathdoc},
     volume = {94},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a5/}
}
TY  - JOUR
AU  - S. V. Vostokov
TI  - Hilbert symbol in a discrete valuated field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 50
EP  - 69
VL  - 94
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a5/
LA  - ru
ID  - ZNSL_1979_94_a5
ER  - 
%0 Journal Article
%A S. V. Vostokov
%T Hilbert symbol in a discrete valuated field
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 50-69
%V 94
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a5/
%G ru
%F ZNSL_1979_94_a5
S. V. Vostokov. Hilbert symbol in a discrete valuated field. Zapiski Nauchnykh Seminarov POMI, Rings and modules. Part 2, Tome 94 (1979), pp. 50-69. http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a5/