Parabolic subgroups of twisted Chevalley groups over a semilocal ring
Zapiski Nauchnykh Seminarov POMI, Rings and modules. Part 2, Tome 94 (1979), pp. 21-36

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, under minor additional assumptions, the standard parabolic subgroups of a Chevalley group $G_\rho(\Phi,R)$ of twisted type $\Phi=A_\ell$, $\ell$ – odd, $D_\ell$ ,$E_6$ over a commutative semilocal ring $R$ with involution $\rho$ are in one-to-one correspondence with the $\rho$-invariant parabolic nets of ideals of $R$ of type $\Phi$, i.e., with the sets, of ideals $\sigma_\alpha$ of $R$ such that: (1) whenever; (2) $\rho\sigma_\alpha=\sigma_{\rho\alpha}$ for all $\alpha$; (3 $\sigma_\alpha=R$ for $\alpha>0$. For Chevalley groups of normal types, analogous results were obtained in Ref. Zh. Mat. 1976, 10A151; 1977, 10A 301; 1978, 6A476.
@article{ZNSL_1979_94_a2,
     author = {N. A. Vavilov},
     title = {Parabolic subgroups of twisted {Chevalley} groups over a semilocal ring},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--36},
     publisher = {mathdoc},
     volume = {94},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Parabolic subgroups of twisted Chevalley groups over a semilocal ring
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 21
EP  - 36
VL  - 94
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a2/
LA  - ru
ID  - ZNSL_1979_94_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Parabolic subgroups of twisted Chevalley groups over a semilocal ring
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 21-36
%V 94
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a2/
%G ru
%F ZNSL_1979_94_a2
N. A. Vavilov. Parabolic subgroups of twisted Chevalley groups over a semilocal ring. Zapiski Nauchnykh Seminarov POMI, Rings and modules. Part 2, Tome 94 (1979), pp. 21-36. http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a2/