Triviality of certain cohomology groups
Zapiski Nauchnykh Seminarov POMI, Rings and modules. Part 2, Tome 94 (1979), pp. 114-115

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $X=\operatorname{Spec}A$ is an affine scheme. It is known that if $\mathscr F$ is a quasicoherent $O_x$-module, then for $i>0$.We give a simple direct proof of this fact.
@article{ZNSL_1979_94_a11,
     author = {A. A. Suslin},
     title = {Triviality of certain cohomology groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--115},
     publisher = {mathdoc},
     volume = {94},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a11/}
}
TY  - JOUR
AU  - A. A. Suslin
TI  - Triviality of certain cohomology groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 114
EP  - 115
VL  - 94
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a11/
LA  - ru
ID  - ZNSL_1979_94_a11
ER  - 
%0 Journal Article
%A A. A. Suslin
%T Triviality of certain cohomology groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 114-115
%V 94
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a11/
%G ru
%F ZNSL_1979_94_a11
A. A. Suslin. Triviality of certain cohomology groups. Zapiski Nauchnykh Seminarov POMI, Rings and modules. Part 2, Tome 94 (1979), pp. 114-115. http://geodesic.mathdoc.fr/item/ZNSL_1979_94_a11/