The first and second boundary value problems for $(A,\vec b)$-elliptic equations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 171-181

Voir la notice de l'article provenant de la source Math-Net.Ru

The formulation of general (first-second) boundary value problem is given for a large class of equations in a divergent form, admitting a “fixed” degeneration on any subset of the domain in which the argument is defined. The conditions of existence and uniqueness of generalized solutions of this problem continuously depending on the data are established.
@article{ZNSL_1979_92_a8,
     author = {A. V. Ivanov},
     title = {The first and second boundary value problems for $(A,\vec b)$-elliptic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {171--181},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a8/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - The first and second boundary value problems for $(A,\vec b)$-elliptic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 171
EP  - 181
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a8/
LA  - ru
ID  - ZNSL_1979_92_a8
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T The first and second boundary value problems for $(A,\vec b)$-elliptic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 171-181
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a8/
%G ru
%F ZNSL_1979_92_a8
A. V. Ivanov. The first and second boundary value problems for $(A,\vec b)$-elliptic equations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 171-181. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a8/