The uncertainty principle for operators commuting with translations.~I
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 134-170

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a class of distributions (in $\mathbb R$), $K$ a distribution, $E\subset\mathbb R$. The set $E$ is said to be a $(K,X)$-set if there is no non-zero $f\in X$ such that. The $f\in X$, $f|E=(k\ast f)|E$ article begins with some examples of kernels $K$ for which every non-empty interval is a $(K,L^2)$-set (among them are the M. Btiesz kernels). Some connections with the Cauchy problem for the laplace equation and with approximations by linear combinations of translations of the kernel are discussed. The principal results treat kernels $K$ with the “semirational” Fourier transforms (symbols) $\hat K$. This means that $\hat K$ coincides with a rational function $\tau$ on a ray $(C,+\infty)$ and $\operatorname{mes}\{\xi\in(-\infty,b]:\hat{K}(\xi)=r(\xi)\}=0$ for a $b\le c$ is proved that every Carleson set $E$ with $\operatorname{mes}E>0$ is a $(K,X)$-set if $K$ has a semiratioaal symbol and $X$ is the domain (in $L^2$) of the operator $f\to K*f$ (a compact set $E$ of real numbers is said to be a Carleson set if $\sum|\ell|\log|\ell|>-\infty$, the sum being taken over the family of all bounded complementary intervals $l$ of $E$). This result implies some uniqueness theorems for weakly perturbed Hilbert transforms.
@article{ZNSL_1979_92_a7,
     author = {B. J\"oricke and V. P. Havin},
     title = {The uncertainty principle for operators commuting with {translations.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--170},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a7/}
}
TY  - JOUR
AU  - B. Jöricke
AU  - V. P. Havin
TI  - The uncertainty principle for operators commuting with translations.~I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 134
EP  - 170
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a7/
LA  - ru
ID  - ZNSL_1979_92_a7
ER  - 
%0 Journal Article
%A B. Jöricke
%A V. P. Havin
%T The uncertainty principle for operators commuting with translations.~I
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 134-170
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a7/
%G ru
%F ZNSL_1979_92_a7
B. Jöricke; V. P. Havin. The uncertainty principle for operators commuting with translations.~I. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 134-170. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a7/