Invariant subspaces and rational approximation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 103-114
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be a linear operator in a Banach space $X$ with the complete set of eigen- and root-vectors. Each of formulas (1)–(3) defines a “capacity” $\operatorname{cap}k$ of the integer valued function (the divisor) $k$, a capacity $\operatorname{cap}E\overset{\text{def}}=\operatorname{cap}k$ of the subspace $E\overset{\text{def}}=E^k$, generated by the root subspaces $\operatorname{Ker}(T-\lambda I)^s$, $0\le s$, $\lambda\in\mathbb C$, or a capacity $\operatorname{cap}x\overset{\text{def}}=\operatorname{cap}k$ of the vector $x$ $\operatorname{span}(T^nx:n\ge0)=E^k$.
It is proved that
$$
\varliminf E^{k_n}\overset{\text{def}}=
\{x:\lim\operatorname{dist}(x,E_{k_n})=0\}\neq X\Longleftrightarrow
\varliminf\operatorname{cap}E^{k_n}\infty
$$
and that $x$ is not cyclic $(V(T^nx:n\ge0)\ne x)$, if $x=\lim_nx_n$, $\sup_n\operatorname{cap}x_n\infty$.
The principal special case $T=Z^*$, $Z^*f\overset{\text{def}}=\frac{f-f(0)}z$ is considered in detail. In
this case root-vectors are rational functions. Bilateral estimates of capacities are given for the Hardy spaces $H^p$, $1\le p\le\infty$, and the spaces $C_A^{(n)}\overset{\text{def}}=\{f:f^{(n)}\in C_A\}$ ($C_A$
being the disc-algebra). These results imply known theorems of G. Tumarkin, H. Douglas–H. Shapiro–A. Shields and of H. Hilden–L. Wallen.
@article{ZNSL_1979_92_a5,
author = {M. B. Gribov and N. K. Nikol'skii},
title = {Invariant subspaces and rational approximation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {103--114},
publisher = {mathdoc},
volume = {92},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a5/}
}
M. B. Gribov; N. K. Nikol'skii. Invariant subspaces and rational approximation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 103-114. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a5/