Weighted norm inequalities for the Littlewood–Paley function in domains with cone-points
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 278-282
Cet article a éte moissonné depuis la source Math-Net.Ru
The classes $\mathscr H_\alpha^p(\Omega)$ of harmonic functions in a domain $\Omega$, $\Omega\subset\mathbb R^n$, $n\ge3$, with finite number of cone-points are introduced. The weighted analogue of the well-known Littlewood–Paley inequality for corresponding functions in $\Omega$ is proved.
@article{ZNSL_1979_92_a20,
author = {A. \`E. Dzhrbashyan},
title = {Weighted norm inequalities for the {Littlewood{\textendash}Paley} function in domains with cone-points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {278--282},
year = {1979},
volume = {92},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/}
}
A. È. Dzhrbashyan. Weighted norm inequalities for the Littlewood–Paley function in domains with cone-points. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 278-282. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/