Weighted norm inequalities for the Littlewood--Paley function in domains with cone-points
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 278-282

Voir la notice de l'article provenant de la source Math-Net.Ru

The classes $\mathscr H_\alpha^p(\Omega)$ of harmonic functions in a domain $\Omega$, $\Omega\subset\mathbb R^n$, $n\ge3$, with finite number of cone-points are introduced. The weighted analogue of the well-known Littlewood–Paley inequality for corresponding functions in $\Omega$ is proved.
@article{ZNSL_1979_92_a20,
     author = {A. \`E. Dzhrbashyan},
     title = {Weighted norm inequalities for the {Littlewood--Paley} function in domains with cone-points},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {278--282},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/}
}
TY  - JOUR
AU  - A. È. Dzhrbashyan
TI  - Weighted norm inequalities for the Littlewood--Paley function in domains with cone-points
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 278
EP  - 282
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/
LA  - ru
ID  - ZNSL_1979_92_a20
ER  - 
%0 Journal Article
%A A. È. Dzhrbashyan
%T Weighted norm inequalities for the Littlewood--Paley function in domains with cone-points
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 278-282
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/
%G ru
%F ZNSL_1979_92_a20
A. È. Dzhrbashyan. Weighted norm inequalities for the Littlewood--Paley function in domains with cone-points. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 278-282. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/