Weighted norm inequalities for the Littlewood--Paley function in domains with cone-points
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 278-282
Voir la notice de l'article provenant de la source Math-Net.Ru
The classes $\mathscr H_\alpha^p(\Omega)$ of harmonic functions in a domain $\Omega$, $\Omega\subset\mathbb R^n$, $n\ge3$, with finite number of cone-points are introduced. The weighted analogue of the well-known Littlewood–Paley inequality for corresponding functions in $\Omega$ is proved.
@article{ZNSL_1979_92_a20,
author = {A. \`E. Dzhrbashyan},
title = {Weighted norm inequalities for the {Littlewood--Paley} function in domains with cone-points},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {278--282},
publisher = {mathdoc},
volume = {92},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/}
}
TY - JOUR AU - A. È. Dzhrbashyan TI - Weighted norm inequalities for the Littlewood--Paley function in domains with cone-points JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 278 EP - 282 VL - 92 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/ LA - ru ID - ZNSL_1979_92_a20 ER -
A. È. Dzhrbashyan. Weighted norm inequalities for the Littlewood--Paley function in domains with cone-points. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 278-282. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a20/