The existence of a non-hereditarily complete family in an arbitrary separable Banach space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 274-277
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that every separable Banach space $E$ contains a complete minimal family $\{x_j\}_1^\infty$ with the total biorthogonal family $\{f_j\}_1^\infty$ (in $E^*$) but not hereditarily complete (this means that the closed linear envelope of the f amily $\{f_j(z)x_j\}_1^\infty)$ does not coincide with $E$).
@article{ZNSL_1979_92_a19,
author = {V. I. Gurarii},
title = {The existence of a~non-hereditarily complete family in an arbitrary separable {Banach} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {274--277},
year = {1979},
volume = {92},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a19/}
}
V. I. Gurarii. The existence of a non-hereditarily complete family in an arbitrary separable Banach space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 274-277. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a19/