An estimate of distances between finite dimensional symmetric spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 268-273

Voir la notice de l'article provenant de la source Math-Net.Ru

If $E_1$, $E_2$ are two $n$-dimensional symmetric spaces then the Banach–Mazur distance between them satisfies the inequality $d(E_1,E_2)\le cn^{1/2}\log^4n$, where $C$ is an absolute constant.
@article{ZNSL_1979_92_a18,
     author = {E. D. Gluskin},
     title = {An estimate of distances between finite dimensional symmetric spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {268--273},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a18/}
}
TY  - JOUR
AU  - E. D. Gluskin
TI  - An estimate of distances between finite dimensional symmetric spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 268
EP  - 273
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a18/
LA  - ru
ID  - ZNSL_1979_92_a18
ER  - 
%0 Journal Article
%A E. D. Gluskin
%T An estimate of distances between finite dimensional symmetric spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 268-273
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a18/
%G ru
%F ZNSL_1979_92_a18
E. D. Gluskin. An estimate of distances between finite dimensional symmetric spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 268-273. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a18/