Incomparability of two algebras of continuous functions on the sphere
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 259-264
Cet article a éte moissonné depuis la source Math-Net.Ru
An analogue $\mathscr R(S^{n-1})$ of an algebra of absolutely convergent Fourier series is considered. It is proved that $\mathscr R(S^2)$ and an algebra of restrictions to $S^2$ of absolutely convergent Fourier integrals do not contain each other.
@article{ZNSL_1979_92_a16,
author = {A. V. Basov},
title = {Incomparability of two algebras of continuous functions on the sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {259--264},
year = {1979},
volume = {92},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a16/}
}
A. V. Basov. Incomparability of two algebras of continuous functions on the sphere. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 259-264. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a16/