Incomparability of two algebras of continuous functions on the sphere
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 259-264 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An analogue $\mathscr R(S^{n-1})$ of an algebra of absolutely convergent Fourier series is considered. It is proved that $\mathscr R(S^2)$ and an algebra of restrictions to $S^2$ of absolutely convergent Fourier integrals do not contain each other.
@article{ZNSL_1979_92_a16,
     author = {A. V. Basov},
     title = {Incomparability of two algebras of continuous functions on the sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--264},
     year = {1979},
     volume = {92},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a16/}
}
TY  - JOUR
AU  - A. V. Basov
TI  - Incomparability of two algebras of continuous functions on the sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 259
EP  - 264
VL  - 92
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a16/
LA  - ru
ID  - ZNSL_1979_92_a16
ER  - 
%0 Journal Article
%A A. V. Basov
%T Incomparability of two algebras of continuous functions on the sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 259-264
%V 92
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a16/
%G ru
%F ZNSL_1979_92_a16
A. V. Basov. Incomparability of two algebras of continuous functions on the sphere. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 259-264. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a16/