On a~class of functions of bounded variation on the line defined by their values on a~half-line
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 220-229
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\mathscr L$ be the class of functions analytic in the half-plane $\{\operatorname{Im}t>0\}$ and continuous in $\{\operatorname{Im}t\ge0\}$, representable as Fourier transforms of finite complex measures $\mu$, $\operatorname{supp}\mu\subset\mathbb R$, $-\infty\in\operatorname{supp}\mu$
and nonvanishing in $\{\operatorname{Im}t>0\}$; let $\mathscr L_1$ be the linear envelope of $\mathscr L$. It is proved (theorem 1) that
$$
H_i\in\mathscr L_1,(i=1,2),H_1(x)=H_2(x)\text{ for }x0\Longrightarrow H_1\equiv H_2.
$$
This uniqueness theorem is deduced from the following generalization of the Schottky–Landau theorem (theorem 2): let $g_1,\dots,g_p$ be nonvanishing functions analytic in the disc $\{|z|1\}$ and lizearly independent over $\mathbb C$. Then $|g_k(z)|\le\exp(A(1-|z|)^{-1})(|z|1,k=1,\dots,p,
A\quad\text{not depending on}\quad z)$ provided $\sum_{k=1}^pg_k$ is bounded in the unit disc.
			
            
            
            
          
        
      @article{ZNSL_1979_92_a12,
     author = {I. V. Ostrovskii},
     title = {On a~class of functions of bounded variation on the line defined by their values on a~half-line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {220--229},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a12/}
}
                      
                      
                    TY - JOUR AU - I. V. Ostrovskii TI - On a~class of functions of bounded variation on the line defined by their values on a~half-line JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 220 EP - 229 VL - 92 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a12/ LA - ru ID - ZNSL_1979_92_a12 ER -
I. V. Ostrovskii. On a~class of functions of bounded variation on the line defined by their values on a~half-line. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 220-229. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a12/