On a~class of functions of bounded variation on the line defined by their values on a~half-line
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 220-229

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr L$ be the class of functions analytic in the half-plane $\{\operatorname{Im}t>0\}$ and continuous in $\{\operatorname{Im}t\ge0\}$, representable as Fourier transforms of finite complex measures $\mu$, $\operatorname{supp}\mu\subset\mathbb R$, $-\infty\in\operatorname{supp}\mu$ and nonvanishing in $\{\operatorname{Im}t>0\}$; let $\mathscr L_1$ be the linear envelope of $\mathscr L$. It is proved (theorem 1) that $$ H_i\in\mathscr L_1,(i=1,2),H_1(x)=H_2(x)\text{ for }x0\Longrightarrow H_1\equiv H_2. $$ This uniqueness theorem is deduced from the following generalization of the Schottky–Landau theorem (theorem 2): let $g_1,\dots,g_p$ be nonvanishing functions analytic in the disc $\{|z|1\}$ and lizearly independent over $\mathbb C$. Then $|g_k(z)|\le\exp(A(1-|z|)^{-1})(|z|1,k=1,\dots,p, A\quad\text{not depending on}\quad z)$ provided $\sum_{k=1}^pg_k$ is bounded in the unit disc.
@article{ZNSL_1979_92_a12,
     author = {I. V. Ostrovskii},
     title = {On a~class of functions of bounded variation on the line defined by their values on a~half-line},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {220--229},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a12/}
}
TY  - JOUR
AU  - I. V. Ostrovskii
TI  - On a~class of functions of bounded variation on the line defined by their values on a~half-line
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 220
EP  - 229
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a12/
LA  - ru
ID  - ZNSL_1979_92_a12
ER  - 
%0 Journal Article
%A I. V. Ostrovskii
%T On a~class of functions of bounded variation on the line defined by their values on a~half-line
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 220-229
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a12/
%G ru
%F ZNSL_1979_92_a12
I. V. Ostrovskii. On a~class of functions of bounded variation on the line defined by their values on a~half-line. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 220-229. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a12/