Reconstruction of functions with the given modulus of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 203-219

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu$ be a measure on $[a,b],C_{\omega,\mu}$ the class of all functions $f$ whose continuity modulus does not exceed the given function $\omega$ and such that $\int_a^bf\,d\mu=0$. The problem of eatimatinq $\operatorname{diam}C_{\omega,\mu}$ (in the space $C([a,b])$) is reduced to an equilibrium problem for the “potential” $\int\omega(|x-t|)\,d\mu(t)$.
@article{ZNSL_1979_92_a11,
     author = {A. A. Moisejev},
     title = {Reconstruction of functions with the given modulus of continuity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--219},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a11/}
}
TY  - JOUR
AU  - A. A. Moisejev
TI  - Reconstruction of functions with the given modulus of continuity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 203
EP  - 219
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a11/
LA  - ru
ID  - ZNSL_1979_92_a11
ER  - 
%0 Journal Article
%A A. A. Moisejev
%T Reconstruction of functions with the given modulus of continuity
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 203-219
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a11/
%G ru
%F ZNSL_1979_92_a11
A. A. Moisejev. Reconstruction of functions with the given modulus of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 203-219. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a11/