Reconstruction of functions with the given modulus of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 203-219
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu$ be a measure on $[a,b],C_{\omega,\mu}$ the class of all functions $f$ whose continuity modulus does not exceed the given function $\omega$ and such that $\int_a^bf\,d\mu=0$. The problem of eatimatinq
$\operatorname{diam}C_{\omega,\mu}$ (in the space $C([a,b])$) is reduced to an equilibrium problem for the “potential” $\int\omega(|x-t|)\,d\mu(t)$.
@article{ZNSL_1979_92_a11,
author = {A. A. Moisejev},
title = {Reconstruction of functions with the given modulus of continuity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--219},
publisher = {mathdoc},
volume = {92},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a11/}
}
A. A. Moisejev. Reconstruction of functions with the given modulus of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 203-219. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a11/