On summability with respect to an arbitrary measure of functions from Sobolev–Slobodetsky spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 192-202
Cet article a éte moissonné depuis la source Math-Net.Ru
Necesary and sufficient conditions for boundedness of emdedding operators: $L_p^\ell\to L_q(\mu,\mathbb R^n)$ and $W_p^\ell\to L_q(\mu,\mathbb R^n)$ ($q>p>1$ or $q\ge p=1$) are found.
@article{ZNSL_1979_92_a10,
author = {V. G. Maz'ya},
title = {On summability with respect to an arbitrary measure of functions from {Sobolev{\textendash}Slobodetsky} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {192--202},
year = {1979},
volume = {92},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a10/}
}
V. G. Maz'ya. On summability with respect to an arbitrary measure of functions from Sobolev–Slobodetsky spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 192-202. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a10/