The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 30-50

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ a complex Banach space, $1$, $1/p+1/p'=1$; $A^p(X)$ is the space of all $X$-valued analytic in the open disk $L^p$-integrable functions. By means of the natural duality it is proved that $A^p(X)^*=A^{p'}(X^*)$. Let $\mathbf A^p$ and $\mathbf H^p$ be the functors in a category of Banach spaces, generated by $A^p(X)$ and the Hardy space $H^p(X)$ respectively. With some restrictions on the category the following it true: 1) $D\mathbf A^p=\mathbf A^{p'}$; 2) $H^p(X)^*=D\mathbf H^p(X^*)$; 3) $D\mathbf H^p\ne\mathbf H^{p'}$ in the category of all separable reflexive Banach spaces; 4) the functors $\mathbf A^p$ and $\mathbf H^p$ are reflexive.
@article{ZNSL_1979_92_a1,
     author = {A. V. Bukhvalov},
     title = {The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--50},
     publisher = {mathdoc},
     volume = {92},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a1/}
}
TY  - JOUR
AU  - A. V. Bukhvalov
TI  - The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 30
EP  - 50
VL  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a1/
LA  - ru
ID  - ZNSL_1979_92_a1
ER  - 
%0 Journal Article
%A A. V. Bukhvalov
%T The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 30-50
%V 92
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a1/
%G ru
%F ZNSL_1979_92_a1
A. V. Bukhvalov. The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 30-50. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a1/