Voir la notice du chapitre de livre
, $1/p+1/p'=1$; $A^p(X)$ is the space of all $X$-valued analytic in the open disk $L^p$-integrable functions. By means of the natural duality it is proved that $A^p(X)^*=A^{p'}(X^*)$. Let $\mathbf A^p$ and $\mathbf H^p$ be the functors in a category of Banach spaces, generated by $A^p(X)$ and the Hardy space $H^p(X)$ respectively. With some restrictions on the category the following it true: 1) $D\mathbf A^p=\mathbf A^{p'}$; 2) $H^p(X)^*=D\mathbf H^p(X^*)$; 3) $D\mathbf H^p\ne\mathbf H^{p'}$ in the category of all separable reflexive Banach spaces; 4) the functors $\mathbf A^p$ and $\mathbf H^p$ are reflexive.
@article{ZNSL_1979_92_a1,
author = {A. V. Bukhvalov},
title = {The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--50},
year = {1979},
volume = {92},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a1/}
}
TY - JOUR AU - A. V. Bukhvalov TI - The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces JO - Zapiski Nauchnykh Seminarov POMI PY - 1979 SP - 30 EP - 50 VL - 92 UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a1/ LA - ru ID - ZNSL_1979_92_a1 ER -
A. V. Bukhvalov. The duals to the spaces of analytic vectorvalued functions and the duality of functions, generated by these spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part IX, Tome 92 (1979), pp. 30-50. http://geodesic.mathdoc.fr/item/ZNSL_1979_92_a1/