On the distribution of the sequence $\{bp^{3/2}\}\mod1$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 2, Tome 91 (1979), pp. 31-39
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the method of I. M. Vinogradov, the authors derive an asymptotic formula connected with distribution of fractional parts $\{bp^{3/2}\}$, $p\le N$, $N\to\infty$, where $b>0$ and $p$ runs through all prime numbers.
@article{ZNSL_1979_91_a2,
author = {E. P. Golubeva and O. M. Fomenko},
title = {On the distribution of the sequence $\{bp^{3/2}\}\mod1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--39},
publisher = {mathdoc},
volume = {91},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_91_a2/}
}
E. P. Golubeva; O. M. Fomenko. On the distribution of the sequence $\{bp^{3/2}\}\mod1$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 2, Tome 91 (1979), pp. 31-39. http://geodesic.mathdoc.fr/item/ZNSL_1979_91_a2/