The convergence with order $h^{2p-1}$ of $2p+1$-point scheme of the method of lines for a~certain boundary value problem
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 3, Tome 90 (1979), pp. 39-45
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ZNSL_1979_90_a2,
author = {A. P. Kubanskaya},
title = {The convergence with order $h^{2p-1}$ of $2p+1$-point scheme of the method of lines for a~certain boundary value problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--45},
publisher = {mathdoc},
volume = {90},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_90_a2/}
}
TY - JOUR
AU - A. P. Kubanskaya
TI - The convergence with order $h^{2p-1}$ of $2p+1$-point scheme of the method of lines for a~certain boundary value problem
JO - Zapiski Nauchnykh Seminarov POMI
PY - 1979
SP - 39
EP - 45
VL - 90
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_1979_90_a2/
LA - ru
ID - ZNSL_1979_90_a2
ER -
%0 Journal Article
%A A. P. Kubanskaya
%T The convergence with order $h^{2p-1}$ of $2p+1$-point scheme of the method of lines for a~certain boundary value problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 39-45
%V 90
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_90_a2/
%G ru
%F ZNSL_1979_90_a2
A. P. Kubanskaya. The convergence with order $h^{2p-1}$ of $2p+1$-point scheme of the method of lines for a~certain boundary value problem. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part 3, Tome 90 (1979), pp. 39-45. http://geodesic.mathdoc.fr/item/ZNSL_1979_90_a2/