Uniform dispersion equation in the multichannal problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 71-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Uniform dispersion equation for multichannal problem is obtained. The authors consider the transformation of eigenvalues and eigenfunctions of two waveguides separated by antiwaveguide barrier to eigenvalues and eigenfunctions of a composed waveguide.
@article{ZNSL_1979_89_a4,
     author = {V. S. Buldyrev and N. S. Grigor'ev},
     title = {Uniform dispersion equation in the multichannal problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--83},
     year = {1979},
     volume = {89},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/}
}
TY  - JOUR
AU  - V. S. Buldyrev
AU  - N. S. Grigor'ev
TI  - Uniform dispersion equation in the multichannal problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 71
EP  - 83
VL  - 89
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/
LA  - ru
ID  - ZNSL_1979_89_a4
ER  - 
%0 Journal Article
%A V. S. Buldyrev
%A N. S. Grigor'ev
%T Uniform dispersion equation in the multichannal problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 71-83
%V 89
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/
%G ru
%F ZNSL_1979_89_a4
V. S. Buldyrev; N. S. Grigor'ev. Uniform dispersion equation in the multichannal problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 71-83. http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/