Uniform dispersion equation in the multichannal problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 71-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniform dispersion equation for multichannal problem is obtained. The authors consider the transformation of eigenvalues and eigenfunctions of two waveguides separated by antiwaveguide barrier to eigenvalues and eigenfunctions of a composed waveguide.
@article{ZNSL_1979_89_a4,
     author = {V. S. Buldyrev and N. S. Grigor'ev},
     title = {Uniform dispersion equation in the multichannal problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {89},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/}
}
TY  - JOUR
AU  - V. S. Buldyrev
AU  - N. S. Grigor'ev
TI  - Uniform dispersion equation in the multichannal problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 71
EP  - 83
VL  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/
LA  - ru
ID  - ZNSL_1979_89_a4
ER  - 
%0 Journal Article
%A V. S. Buldyrev
%A N. S. Grigor'ev
%T Uniform dispersion equation in the multichannal problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 71-83
%V 89
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/
%G ru
%F ZNSL_1979_89_a4
V. S. Buldyrev; N. S. Grigor'ev. Uniform dispersion equation in the multichannal problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 71-83. http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a4/