Correctness of the problem of whispering gallery waves in a~vicinity of the-points where boundary's curvature vanishes
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 261-269

Voir la notice de l'article provenant de la source Math-Net.Ru

Two problems of propagation of whispering gallery waves are considered. The first one arises when in some point $s=0$ boundary's curvature $K(s)$ equal zero, but $\frac{dK}{ds}|_{s=0}\ne0$; the second – when $K(0)=\frac{dK}{ds}|_{s=0}=0$, but $\frac{d^2K}{ds^2}|_{s=0}\ne0$ in a point $s=0$. Using technique of the wave operators of the scattering theory it is proved that each problem has one and only one solution.
@article{ZNSL_1979_89_a18,
     author = {M. M. Popov},
     title = {Correctness of the problem of whispering gallery waves in a~vicinity of the-points where boundary's curvature vanishes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {261--269},
     publisher = {mathdoc},
     volume = {89},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a18/}
}
TY  - JOUR
AU  - M. M. Popov
TI  - Correctness of the problem of whispering gallery waves in a~vicinity of the-points where boundary's curvature vanishes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 261
EP  - 269
VL  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a18/
LA  - ru
ID  - ZNSL_1979_89_a18
ER  - 
%0 Journal Article
%A M. M. Popov
%T Correctness of the problem of whispering gallery waves in a~vicinity of the-points where boundary's curvature vanishes
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 261-269
%V 89
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a18/
%G ru
%F ZNSL_1979_89_a18
M. M. Popov. Correctness of the problem of whispering gallery waves in a~vicinity of the-points where boundary's curvature vanishes. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 261-269. http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a18/