The focussing problem and spectral function asymptotics of Laplace-- Beltrami operator.~II
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 14-53

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of the paper is the construction of formal high frequency solution of the source problem in the neighbourhood of a reflecting boundary. The boundary is geodesically concave. It gives the possibility to use diffraction methods by V. A. Fock. and J. B. Keller. The formal solution of the source problem is applied to obtain the asymptotics of spectral function of Laplace–Beltrami operator.
@article{ZNSL_1979_89_a1,
     author = {V. M. Babich},
     title = {The focussing problem and spectral function asymptotics of {Laplace--} {Beltrami} {operator.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--53},
     publisher = {mathdoc},
     volume = {89},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - The focussing problem and spectral function asymptotics of Laplace-- Beltrami operator.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 14
EP  - 53
VL  - 89
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a1/
LA  - ru
ID  - ZNSL_1979_89_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T The focussing problem and spectral function asymptotics of Laplace-- Beltrami operator.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 14-53
%V 89
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a1/
%G ru
%F ZNSL_1979_89_a1
V. M. Babich. The focussing problem and spectral function asymptotics of Laplace-- Beltrami operator.~II. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 10, Tome 89 (1979), pp. 14-53. http://geodesic.mathdoc.fr/item/ZNSL_1979_89_a1/