, $\varepsilon>0$) that: 1) $\mathfrak L(p,\varepsilon)\in\langle\mathfrak A;X_0\rangle$; 2) $\forall Y_{Y\in\langle\mathfrak A;X_0\rangle} (\text{И}_{\langle\mathfrak A;X_0\rangle}(p)\leq \text{И}_{\langle\mathfrak A; \mathfrak L(p,\varepsilon)\rangle}(p)+\varepsilon)$; 3) $\exists\bar p(\bar p>0\&\forall p_1p_2\varepsilon_1\varepsilon_2 (\bar p\geq p_1\geq p_2\&\varepsilon_1\geq\varepsilon_2 \Longrightarrow\mathfrak L(p_2,\varepsilon_2)\in\langle\mathfrak A; \mathfrak L(p_1,\varepsilon_1)\rangle))$. Instead of (1) now assume the condition of monotonicity $Y\in\mathfrak A(X)\Longrightarrow\forall Z\exists Z'(Y+Z'\in\mathfrak A(X+Z))$. System $\langle\mathfrak A;X_0\rangle$ is weak-decidible if for every $X$ we can algorithmically recognize an existence of such $Z$ that $X+Z$ is deducible in $\langle\mathfrak A;X_0\rangle$. Under broad conditions $\langle\mathfrak A;X_0\rangle$ is weak-decidable, but there are undecidable systems for $\mathfrak A$ which describe very symple technological possibilities.} The economical interpretation of results is studied.
@article{ZNSL_1979_88_a7,
author = {S. Yu. Maslov},
title = {Calculuses with monotone deductions and their economic interpretation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {90--105},
year = {1979},
volume = {88},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a7/}
}
S. Yu. Maslov. Calculuses with monotone deductions and their economic interpretation. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 90-105. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a7/