A~diophantine representation of perfect numbers
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 78-89

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural number ft is perfect iff system (2)–(33) of diophantine equations has a positive integer solution in the rest of variables.
@article{ZNSL_1979_88_a6,
     author = {V. A. Kriau\v{c}iukas},
     title = {A~diophantine representation of perfect numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--89},
     publisher = {mathdoc},
     volume = {88},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a6/}
}
TY  - JOUR
AU  - V. A. Kriaučiukas
TI  - A~diophantine representation of perfect numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 78
EP  - 89
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a6/
LA  - ru
ID  - ZNSL_1979_88_a6
ER  - 
%0 Journal Article
%A V. A. Kriaučiukas
%T A~diophantine representation of perfect numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 78-89
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a6/
%G ru
%F ZNSL_1979_88_a6
V. A. Kriaučiukas. A~diophantine representation of perfect numbers. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 78-89. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a6/