On decision procedures for invariant properties of short algorithms
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 73-77

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower bounds on Gödel numbers of decision procedures for invariant properties of short algorithms are established. Let $R$ be an enumerable class of partial (or general) recursive functions with partial recursive universal functions $u^1$ and $u^2$ for unary and binary functions of class $R$ respectively. Let also a function $S$ and constants $c$, $a$ satisfy the following conditions for every $x,y,z,u,v$. 1. $\{S(x,y)\}(z)\simeq\{x\}(y,z)$ 2. $\{S(c,x)\}(y,z)\simeq\{x\}(S(y,y),z)$ 3. $\{S^3(a,x,y,z)\}(u,v)\simeq$ if $\{z\}(u)\ne0$ then $\{x\}(v)$ else $\{y\}(v)$ where $\{x\}(y)$, $\{x\}(y,z)$ and $S^3(a,x,y,z)$ stand for instead of $u^1(x,y)$, $u^2(x,y,z)$ and $S(S(S(a,x),y),z)$ respectively. Many interesting classes of algorithms with natural numbering satisfy such conditions. Let $t(z)=\max(S(i,j,),z)$ for all $i,j\leq z$, $t^{-1}(z)=\mu y_{\leq z}[t(y)\leq z]$. Evidently, $t^{-1}(t(z))=z$. A property $A$ is called non-trivial up to $N_1$ if $\exists_{ab_{$. A property $A$ is called invariant up to $N$ ($N$ may be equal to $+\infty$) if for all $m$, $n$, $x$ $(\{m\}(x)\simeq\{n\}(x))\supset(A(m)\equiv A(n))$. This theorem is a generalization of the main theorem from [2], which entails the Rice theorem. Theorem. {\it Let an algorithm $\{m\}$ decide some property $A$ of unary algorithms of class $R$. If the property $A$ is non-trivial up to $N_1$, and invariant up to $N$, then for $N\geq\max(t^{\langle2\rangle}(c)$, $t^{\langle5\rangle}(N_1)$, $t^{\langle5\rangle}(a))$ we have $m\geq t^{\langle{-3}\rangle}(N)$, where $t^{\langle k\rangle}(x)$ and $t^{\langle{-k}\rangle}(x)$ stand for $t(\dots t(x)\dots)$ $k$ times and $t^{-1}(\dots t^{-1}(x)\dots)$ $k$ times respectively.}
@article{ZNSL_1979_88_a5,
     author = {N. K. Kossovski},
     title = {On decision procedures for invariant properties of short algorithms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--77},
     publisher = {mathdoc},
     volume = {88},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a5/}
}
TY  - JOUR
AU  - N. K. Kossovski
TI  - On decision procedures for invariant properties of short algorithms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 73
EP  - 77
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a5/
LA  - ru
ID  - ZNSL_1979_88_a5
ER  - 
%0 Journal Article
%A N. K. Kossovski
%T On decision procedures for invariant properties of short algorithms
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 73-77
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a5/
%G ru
%F ZNSL_1979_88_a5
N. K. Kossovski. On decision procedures for invariant properties of short algorithms. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 73-77. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a5/