Two reductions of graph isomorphism to problems for polynomials
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 56-61

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of isomorphism of $n$-vertices graphs with weights on their edges possesses a full system of invariants which consists of $(n^2+1)$ polynomials of degree $\leq n^2$ (theorem 1). The proof of existence of such a system is not effective and is based on the primitive element theorem. Theorem 2 asserts that the graph isomorphism problem (or even the problem of divising the set of vertices of a graph $T$ on the domains of transitivity) can be reduced in polynomial time to the problem of decomposition of some univariable polynomial $f$ into irreducible multipliers over some field $F_T$ (the coefficients of $f$ depend only on the number of vertices of $T$).
@article{ZNSL_1979_88_a3,
     author = {D. Yu. Grigor'ev},
     title = {Two reductions of graph isomorphism to problems for polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--61},
     publisher = {mathdoc},
     volume = {88},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a3/}
}
TY  - JOUR
AU  - D. Yu. Grigor'ev
TI  - Two reductions of graph isomorphism to problems for polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 56
EP  - 61
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a3/
LA  - ru
ID  - ZNSL_1979_88_a3
ER  - 
%0 Journal Article
%A D. Yu. Grigor'ev
%T Two reductions of graph isomorphism to problems for polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 56-61
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a3/
%G ru
%F ZNSL_1979_88_a3
D. Yu. Grigor'ev. Two reductions of graph isomorphism to problems for polynomials. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 56-61. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a3/