Representation of proof s' by coloured graphs and Hadwiger hypothesis
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 209-217

Voir la notice de l'article provenant de la source Math-Net.Ru

Coloured graph is a directed graph with some vertices and ares coloured in some colours. If $A$ is a set of $k$-vertex coloured graphs and $G$ is a coloured graph then $G$ is said to be $A$-well-coloured if all its $k$-vertex subgraphs belong to $A$. We describe a construction of a finite set $B_p$ of 3-vertex graphs with ares coloured in some colours and a finite set $C_p$ of 2-vertex graphs with ares and vertices coloured in some colours for a given formula $P$ of the first order predicate calcules such that $\vdash P$ if and only if there exists $B_p$-well-(arc)coloured graph $G$ which does not permit $C_p$-well-colouring of vertices. Hadwiger hypothesis (HH): if no subgraph of lopp-free graph $G$ is contracted to $n$-vertex complete graph, then vertices of $G$ can be coloured in $(n-1)$ colours in such a way that neighbouring vertices are coloured in distinct colours. We construct a formula $X$ of the first order predicate calcules such that HH is equivalent to $\rceil\vdash X$. Thus HH is reduced to the statement. If all 3-vertex subgraphs of arc-coloured graph $G$ belong to $B_X$ then the vertices of $G$ can be $C_X$-well-coloured. Here $B_X$ and $C_X$ are concrete finite sets of 3-vertex and 2-vertex coloured graphs.
@article{ZNSL_1979_88_a16,
     author = {P. Yu. Suvorov},
     title = {Representation of proof s' by coloured graphs and {Hadwiger} hypothesis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {209--217},
     publisher = {mathdoc},
     volume = {88},
     year = {1979},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a16/}
}
TY  - JOUR
AU  - P. Yu. Suvorov
TI  - Representation of proof s' by coloured graphs and Hadwiger hypothesis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1979
SP  - 209
EP  - 217
VL  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a16/
LA  - ru
ID  - ZNSL_1979_88_a16
ER  - 
%0 Journal Article
%A P. Yu. Suvorov
%T Representation of proof s' by coloured graphs and Hadwiger hypothesis
%J Zapiski Nauchnykh Seminarov POMI
%D 1979
%P 209-217
%V 88
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a16/
%G ru
%F ZNSL_1979_88_a16
P. Yu. Suvorov. Representation of proof s' by coloured graphs and Hadwiger hypothesis. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 209-217. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a16/