A~growth of length of $\mathrm L$-derivationtrans formed into natural deduction
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 192-196
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varphi$ be a standard transformation [5] of Gentzen's $\mathrm L$-derivation $\alpha$ into natural deduction $\varphi(\alpha)$. We prove that $\operatorname{length}(\varphi(\alpha))\leq2^{2\cdot\operatorname{length}(\alpha)}$ where $\alpha$ is $(\,\supset)$-Gentzen's intuitionistic $\mathrm L$-derivation.
This bound is almost optimal: an increasing sequence of $\mathrm L$-derivations $\alpha_i$ is constructed such that $\operatorname{length}(\varphi(\alpha_i))\leq2^{1/3\operatorname{length}(\alpha_i)}$.
@article{ZNSL_1979_88_a14,
author = {S. V. Solov'ev},
title = {A~growth of length of $\mathrm L$-derivationtrans formed into natural deduction},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {192--196},
publisher = {mathdoc},
volume = {88},
year = {1979},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a14/}
}
S. V. Solov'ev. A~growth of length of $\mathrm L$-derivationtrans formed into natural deduction. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VIII, Tome 88 (1979), pp. 192-196. http://geodesic.mathdoc.fr/item/ZNSL_1979_88_a14/